S

REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-05-
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction 0 'Z q, 5‘
data needed, and completing and reviewing this coflection of information. Send comments regarding this burden estimate or any other aspect o
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 12 vy, W LLLUZ-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penatty for failing to cOmMp,, w1 a wmecuon of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
23/6/2005 Final Report 01/7/2004---30/6/2005
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Simulation of Quantum Time-Frequency Transform Algorithms
' 6b. GRANT NUMBER
FA9550-04-1-0406

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) §d. PROJECT NUMBER
Chao Lu

Computer & Information Sciences Se. TASK NUMBER

Towson University 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
. NUMBER

Towson University 8000 York Road
Towson, MD 21252

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)) 10. SPONSOR/MONITOR’S ACRONYM(S)
Dr. Jon Sjogren 4015 Wilson Blvd, Room 713
AFOSR/NM Arlington, VA 22203-1954

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The demand for exact computation in scientific fields related to quantum physics is not met by the Symbolic Math Toolbox developed
in MATLAB. In particular, exact evaluation rational multiples of 2(Jis at the heart of efficient implementation of quantum time-frequency
transforms. Computations performed using this Toolbox generate erroneous results when used with numbers with more than twenty digits
in length. Furthermore, the results of our investigation lead us to believe that floating-point operations may be used during the computing
process of this Toolbox. The Exact Computing system introduced in this report yields significant decreases in computation times, as well as
providing an exact method of storing and computing data. In this system, exact values are obtained by storing numbers as numerator and
denominator of rational numbers. Integers can be of any length.

We define a data structure of rational matrices using rational numbers and a set of related operators. We also started to use alternative
approach to represent all integers and rational numbers in terms of a set of residues with respect to a prime number and its powers, called a
p-adic number system. The p-adic arithmetic has many attractive features.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Chao Lu
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
code)
410~704-3701

Shndard Form 298 (Rev. 8-98)

ANQ Q¢4 720

20050705 051

Simulation of Quantum Time-Frequency Transform Algorithms

Final Report (Grant # FA9550-04-1-0406)

Chao Lu
Computer & Information Sciences, Towson University
June 20, 2005

DISTRIBUTION STATEMENTA
Approved for Public Release
Distribution Unlimited

1. Introduction

In the scientific fields related to quantum physics, one is interested in exact linear
computation, and cannot tolerate any round-off/truncation errors introduced by
conventional p-ary or floating-point arithmetic when dealing with matrices containing
rational entries. The demand for exact computation has led us to explore two possible
approaches: (1) rational arithmetic by representing the numerator and denominator of
fractional numbers with arbitrary length integers; (2) residue or modulo arithmetic using
p-adic number systems [1 Krishnamurthy 77]. The computational complexity of the
first approach has been extensively studied. Not only has it been shown that it is very
expensive and laborious, but also that it is a very challenging computer science problem
to deal with dynamic memory allocation during the computing process. The second
approach represents all integers and rational numbers in terms of a set of residues with
respect to a prime number and its powers called a p-adic number system. The p-adic
arithmetic has many attractive features [1]. Furthermore it appears that an extension of
the formalism of quantum theory to the field of p-adic numbers is of great interest even
independent of possible physical applications because it may lead to a better
understanding of the formalism of quantum theory [2 Vladimirov chapter 3]. We have
written C++ routines for approach (1) and utilized part of the NTL and have started to
build a computational library using a p-adic system for applications in quantum
computing. One specific application of quantum computing, quantum computational
Weyl-Heisenberg representations was studied and investigated.

The demand for exact computation in scientific fields related to quantum physics
is not met by the Symbolic Math Toolbox developed in MATLAB. In particular, exact
evaluation rational multiples of 2nis at the heart of efficient implementation of
quantum time-frequency transforms. Computations performed using this Toolbox
generate erroneous results when used with numbers with more than twenty digits in
length. Furthermore, the results of our investigation lead us to believe that
floating-point operations may be used during the computing process of this Toolbox.
The Exact Computing system introduced in this report yields significant decreases in
computation times, as well as providing an exact method of storing and computing
data.

In this system, exact values are obtained by storing numbers as numerator and
denominator of rational numbers. Integers can be of any length. We define a data
structure of rational matrices using rational numbers and a set of related operators.

The Exact Computing system is written in Visual C++, which can be called from
MATLAB.

We also started to use alternative approach to represent all integers and rational
numbers in terms of a set of residues with respect to a prime number and its powers,
called a p-adic number system. The p-adic arithmetic has many attractive features [1].

2. Technical Issues Addressed

2.1 Computational Issues of Rational Arithmetic

In rational matrix computation exact values are obtained by storing an arbitrary length rational
number as numerator and denominator. We define a data structure of rational matrix operations as a
set of operators. The related computational issues are:

a) Data Structure: In order to store data in an exact manner, exact values of rational numbers must be
used and maintained throughout the computation.

b) Integers: The system must be capable of storing and manipulating integers of arbitrary length.

¢) Dynamic memory allocation: Use of dynamic memory to define rational matrices as well as
rational numbers. Properties of the rational matrix to be considered are: size, organizational structure,
and implementation of rational matrix calculations.

d) Interface: Once these problems have been addressed, the interface between C++ and MATLAB
must be considered if one is interested on calling C++ routines from MATLAB due to arbitrary
length.

NTL, written by Victor Shoup, is a high-performance, portable C++ Library for number theory that
provides both data structures and algorithms for arbitrary length integers. NTL allows manipulation
of integers for vectors, matrices, and polynomials over finite fields, and arbitrary precision
floating-point arithmetic.

In our Exact Scientific Computational Library, we only use the arbitrary length integer part of NTL
to accomplish the task of input, output, and storage of arbitrary length integers.

Further information about the NTL library can be found at: http://shoup.net/ntl/.

We have defined a set of rational number operators as:
Operator +:

RationalNumber a, b;
a+b=(a.numerator*b.denominator+b.numerator*a.denominator)
/a.denominator*b.denominator;

Operator -:

RationalNumber a, b;
a-b=(a.numerator*b.denominator-b.numerator*a.denominator)
/a.denominator*b.denominator;

Operator *:
RationalNumber a, b;
a*b=a.numerator*b.numerator/(a.denominator*b.denominator);

Operator /:
RationalNumber a,b;
a/b=a.numerator*b.denominator/(a.denominator*b.numerator);

Operator =:

RationalNumber a, b;

a=b means:
a.numertor=b.numerator;
a.denominator=b.denominator;

Simplify ();
Find the GCD of numerator and denominator; divide both numerator and denominator by the GCD.

Operator ==:
Suppose rational numbers @ and b are in simplest form. If a.numerator==b.numerator and
a.denominator==b.denominator, rational number a equals b.

These operators serve as the basic functions of the implementation of the rational arithmetic
approach. During the computational process all rational entries of a matrix will keep their fractional
data type and will not transfer to floating-point. We have implemented some basic rational matrix
operations such as: addition, subtraction, multiplication and square matrix inverse. More functions
will be added to the library. All routines are written in C++. Interface of our ESCL with MATLAB
has been designed and tested. Preliminary results will be reported in section 3.

2.2 Computational Issues of P-adic Arithmetic

The p-adic arithmetic system was introduced for linear computation by Krishnamurthy [1] in 1977.
The properties of freedom from round off errors and of simplicity of hardware/software
implementation have made it attractive to the scientific community for exact computation. Let us
briefly introduce the p-adic number system and its application in related arithmetic algorithms for
rational matrix computation.

221 Segmented P-adic Expansions (Hensel Codes)

Let “=% be a nonzero rational number such thatb # 0. Then @ can be uniquely expressed as

an expansion of powers of a prime p as:

@ = z ajp J (1)
Where 0 <a, <(p—1). The infinite series (1) converges to the rational number & in the

p-adic norm.

a
The expansion is infinite except in the case of rationals of the form /p" for 120

These rational numbers are called radix fractions.

A general rational number (other than a radix fraction) does not terminate in its p-adic expansion and
the convergence to the actual value in the sense that the p-adic norm is obtained only for infinite
terms. If we segment the p-adic expansion of a rational number to finite # terms, there is a residue
equivalent of this finite expansion, Hensel code H(p.r,a), and this expansion form the basis for
exact computation [1]. As long as the absolute value of the numerator or denominator does not

exceed V(p"—1)/2 the Hensel code is unique.

Let us briefly describe Hensel Codes [1]. If we truncate or segment the p-adic expansion of a
rational number to a finite number of digits », this truncated number has no resemblance to the
rational in the sense of a p-adic norm and it corresponds to some radix fraction. However, there is a
residue equivalent of this finite expansion and this forms the basis for exact computation. We will
discuss this aspect now.

Definition: Let @ be arational number and @-n>G_ps15-3 915808y .- be its p-adic expansion,

Then the finite segment @-n>Topsioesd 15800y where ¥ =n+k+1 is called the Hensel

code of @ and is denoted by H(p.r.a).

For convenience, H(p.t,a) is denoted as an ordered pair in the mantissa-exponent form
thus:(m..e,). Since we keep the length of H(p.r.a)constant (» digits), €. is permitted to be zero or
to be only negative values. When €, =~ the radix point is placed » digits to the right of the

left-most digit of 7. accordingly, the mantissa is an integer and we can always assume that s is
of the form
m, =a,,d,..,4,_
and

e <0.

a

Let @ =(a/b)p” be a rational number where

GCD(a.b) =1.andGCD(a.p) = GCD (b, p) =1.
Let H(p,r,a)=(a,,4,,..a, ,~n)=(m,,e,) then Mg =0d0>% % is the p-ary

representation of the integer la-27| .5 in other words

r-1
-1 i
m, =|a-b | , =Za,p'.
P %
222 Arithmetic Operations Using Hensel Codes

Basic arithmetic operations using H (2,7,@) codes are essentially modulo P arithmetic realized
as recursion of modulo p operations. Let H(p,r,a)=(m,,e,) and

H(p,r,B)=(mg,e;) where

1) Addition-subtraction: The algorithm for addition aligns the p-adic point of the mantissa, retaining

the lower exponent and finds the sum digit §; and carry digit €i+1from a knowledge a;,b; and
ci.
Thus 8 =(a;, +b; +¢;)mod p
fori=0,1,2,..., (1)

cn=1, if 4 +b,+c;2p

=0, otherwise
¢co=0, andignorec,
Subtraction is realized as a complemented addition.
2) Multiplication: This is similar to p-ary multiplication, except that the product is developed to only

lower r digits (modulo Dr) (and hence has a complexity O(r(r+1)/2)). The algorithm consists in

forming the cross-products of the mantissa
Py=ba; g 0<i<(r-1)
and / = 0,1,...r =1 and the partial product P; and product P thus
r—1
P =2 B,AG)
j=0
r=1
P=Y PA®)
i=0
where A(X)denotes a right shift of X digits. The exponent of the result is (e, +ep)

3Multiplicative Inverse and Division: Given that 0<mg<P" -1 gand

-1 r
GCD(p,mg)=1,my; mod p” can be obtained very simply by a recursive solution of the

congruence with respect to p.

-1
Let M5 =bg;by50b, (o #0)and M5 =qos91559,1- The Yican be obtained by solving

for 4; in
r=l1)
mﬁZqip’ =1mod p’.
i=0
Thus, starting with 9o = by mod p,g, (k21) i computed by solving for

k-1
(q,p" + > q,p")b=1mod p**'.

i=0

This leads to the following deterministic trial-error-free division algorithm the quotient, digit by
digit, proceeding from the lower index to the higher index position.

-1

The following is the algorithm for finding " "5 -
Let

Ry zero-th partial remainder or initial numerator (=1 for finding b™);

R; ith partial remainder;

R; ith positional digit of R;.
Then

g, = R,b;' mod p

for i=0, 1,2, ..., (1) and Risi = R = 4,6A(), where A(i)is the right shift by i digits.

Note that this algorithm can be applied for any numerator; by setting Roo= 1 and all other digits of

R, to zero, one can obtain the multiplicative inverse of ™z . This algorithm has a complexity

O(r(r+1)/2). The exponent of the result is (ea —€p)

223 Conversion of Hensel Codes to Rationals
Although there are several methods available [5], we will describe here a simple method that is very

efficient and economical for matrix computations.

As every rational number a/b (b #0. 0<lal<J(p"-1)/2, 0<|b|3\/(pr—1/2)) is

presented in the form (a b)mod p”, it is possible to determine a as well as b if some common
multiple of all the denominators involved in a given algorithm is known. Since any algorithm

consists of a predetermined sequence of arithmetic operations, it is possible to derive the arithmetic
expression for this common multiple, and this facilitates the conversion.

3. Implementations

3.1 Implementation of Rational Arithmetic

We have written some of the routines for this approach and utilized part of the NTL to fulfill the task
of input, output and storage of arbitrary length integers. We have defined the rational number data
structure with arbitrary length integers, rational operators, rational matrix operations.

For the rational number data structure, the number is stored as its numerator and denominator with
arbitrary length integer. This maintains the precision of the number during the calculation. The
defined rational operators are +, -, *, / and <, >, <=, >=, During computational process all rational
numbers will keep their fractional data type. The floating-point data type was never used, to keep the
calculation free of round-off/truncation errors.

We use the following two examples to show the advantages of our programs in terms of computing
speed and exactness (correctness) by comparing our results with the results generated by the
MATLAB-embedded Symbolic Toolbox.

As far as exactness is concerned, when the input values are small, both methods obtain the same
results. However, when the input values reach very large size (20 digits or more), our system can
obtain exact results, while the symbolic computation can only get approximations. (We suspect that
the Symbolic Toolbox uses floating-point during computations). Our system performs exact
computing, while the Symbolic Toolbox cannot be fully trusted in processes requiring exact
computation.

Example 1: When the data sizes are small, the results are the same.

x = [5/7 9/3 0; y=[5/72/3 0 2/3;
9/-8 0 3/8; 7/8 0 5/3 6/5;
-2/3 2/3 3/4; 2/3 2/5 3/4 /8],
5/6 7/-8 0];

ESCL_multiplyResult 1=

'1229/392' '10/21' ‘5! '428/105'
'-31/56' '-3/5 '9/32! '-27/64'
'17/28' '-13/90' 241/144' '1457/1440"
'-229/1344' '5/9" '-35/24' '-89/180

symbolicMultiplyResult 1 =

[1229/392, 10/21, 5, 428/105]
[-31/56, -3/5, 9/32, -27/64]

[17/28, -13/90, 241/144, 1457/1440]
[-229/1344, 5/9, -35/24, -89/180]

Example 2: When the data sizes are large, the results are different. The special data set chosen can
easily show that our result is correct, while the Symbolic Toolbox is not.

x=[123456789987654321/77777777777777777777, 88888888888888888888/33 ;
-123456789987654321, 88833888888888888888/33];

y=[77777777777777777777/123456789987654321, 1 ;
33/88888888888888888388, 0%

ESCL_MultiplyResult_2 =
2 111111111/70000000007]
[-77777777777777777776 -123456789987654321]

symbolicMultiplyResult 2 =

[81129638414606679562133097328419/40564819207303340847894502572032,
1830034132283545/1152921504606846976]
[-3155041493901370661340022104799488036864391447196301/405648192073033408478945025720
32, -123456789987654320]

To demonstrate the gain in computational speed, the reports generated by MATLAB profiles show
that the results of matrix multiplication with small rational entries, our system is about 2.5 times
faster, and square matrix inverse is about 5 times faster than the MATLAB results. We only
compared two systems of matrices with small rational entries, since MATLAB can only give correct

results in this case.

3.2 Implementation of Matrix Computation Using P-adic Expansions

Program Overview Flowchart:

String2zz()

Get two vectors;
Numerator Vector &
Denominator Vector

l SelectP()

Get the right prime
number P,

l mEstimate()

Get the proper m.

l Frac2padic()

Represent the fraction

by p-adic sequence.

l Matrix2padic()

Get the p-adic matrix
which is a 3-D matrix.

Detail explanation of the program:

User Input

FileName: ZZTools.cpp.

It includes these two functions:

void string2zz(string ell, int roww, int coll,vec_ZZ &allnum,vec_ZZ &allden) ,

ZZ toInteger(string str,int len).

Input: Rational matrix (the length of each elem mEstimate() be arbitrary long)
Output: Numerator vector and Denominator vector,

It is known that the normal data structures cannot deal with arbitrary length integer due to
overflow if the input number is too long. The NTL library is used to handle this problem in our
program.

The following is the description of user interface:

First, the program reminds the user to input the number of rows and columns of a matrix.

Second, the program asks the user to input the element in first row, second row and so on.

Third, the program saves input into two ZZ type vectors; both of them have the same size,
rows-by-columns. One is used to save numerators and the other one is used to save denominators.
The two vectors will be shown on the screen.

Demo of input process: We can see the user interface from the following diagram. It shows that
this process can deal with all kinds of input successfully, such as arbitrary long integers
(1111111111111111111111111...), fractions (1/3), negative numbers (-792, -12/7) and decimals
(12.5,-13.567).

Please ihput‘thévnﬁmher of rous: 2
Please input the number of columns: 4

EPlease follow the instructiens to input the elements of the matrix.
NOTE: After each element you input,please add a comma!

;Please input ROW 1 elements:
j1/3, 1111 1111144111111441,-12/7,321/5,

 P1ease input ROY 2 elements:
-792,-13.567,99999999999999/8888888888888888888,321/5,
INunerator vector is :

(1 114414404444 44144441 12 321 -792 -13567 99999999999999 3211
Denominator vector is :

31751 1680 8833888885888888888 51

Prime number selection:

FileName: selectP.cpp

1t includes the following two functions:
vec_ZZ listPrime(),

ZZ selectP(vec_ZZ vecDen).

Input: Denominator vector.

Output: Smallest Proper prime number.

In C++ program, we implement this process as:

First, we generate the prime number in order.

Second, select the prime number that cannot divide each element of the denominator vector.
Example: for a given rational matrix:

10

[2/5,0.6
273, 0.75],
the smallest prime number is 7.

Find the proper number of digits of a p-adic sequence for the whole matrix

FileName: PredictM.cpp.

It includes the following functions:

void Demon(vec_ZZ inputNum, vec_ZZ inputDen,vec_ZZ& outNum,vec_ZZ& outDen, ZZ&
Go);

void GedO(ZZ £,Z7 g, ZZ& del, ZZ& gam, ZZ& k, ZZ& el);

void sumRows(vec_ZZ inputNum, vec_ZZ inputDen,vec_ZZ& rowNum, vec_ZZ& rowDen, long
m, long n);

long mEstimate(vec_ZZ inputNum,vec_ZZ inputDen, ZZ prime,long m,long n);

Input: Numerator Vector, Denominator Vector, prime number and the size of matrix.

Output: Proper m (m is the number of digits of the p-adic sequence).
The given numerator vector and denominator vector have been simplified.

If it is a fractional number, for example 0.618, we take numerator = 618 and denominator = 1000.
The following diagram shows this process:

11

Numerator Vector
Denominator Vector

Prime number

Example:
Input:
numerator vector is: [2 3 2 3];

denominator vectoris: [553 4];
prime number is : 7

After simplifying, the denominator
vectoris : [5 13 4];

Simplify the
denominator vector

'

Get the least common
multiple (LCM) and

The least common multiple LCM=60,
and integer matrix is:

integer matrix (M) [24, 36
i 40, 45).
M[i]=| M[i] |
+ Sum the rows of the matrix, then we can

Sum the rows of get a row vector:

the matrix [64 81]

v

aa =The product of this row
* LCM * 1000/618

v

m=ceil(2*(log(aa.numerator)-
log(aa.denominator)) /log(Prime))+1

aa.numerator is: 51840000
aa.denominator is: 103

The result m=15

Expand the single fractional number into a P-adic sequence

FileName: frac_Padic.cpp

It includes this function:

void padicExpand(vec_7Z7& w, ZZ prime, long numdig),
and it calls the following functions:

ZZ BoundP(ZZ b , ZZ prime);

ZZ invertp(ZZ n, Z7 prime);

ZZ powmod(ZZ v ,ZZ t, ZZ prime);

RationalNumber* Simplify();

ZZ powerP(ZZp,ZZY1).

12

Input: the numerator and denominator of a rational number, prime number, digits number of the

p-adic sequence.
Output: P-adic sequence vector for the rational number.
We use the following diagram to show this process:

Rational number (R),

Prime number (P),

Number of digits (m)

!

Get the offset of |R|,
W[0]= offset

v

Using the offset to simplify the
rational number |R[, then we get R2

Y il

WI[i] = (R2.Numerator*(R2.Denominator%P))%P

¢ i=i+1

R2 = (R2-W[i]) / P;

v
Yes
w=W

No

W[0]=offset,
WI[11=P-WJ1]

K=2

W[k] =P-W[k]-1

k=k+1

13

Example:
Input: R=-7/9, P=2, m=15,
Output: [0,1,0,0,0,1,1,1,0,0,0,1,1, 1,0].

Represent a rational matrix using p-adic expansion matrix

FileName: matrixCal.cpp
It includes the function: veid matrix2padic(vec ZZ vecNum,vec ZZ vecDenmat ZZ&
matPadic,long numdig,ZZ prime).
Input: Numerator vector, denominator vector, prime number, and the number of digits.
Output: P-adic sequence matrix.

The implementation: For each element of the rational matrix, we call padicExpand(..) function
in the file “frac_Padic.cpp” , then we can get a p-adic sequence vector for this rational number.
Repeat for all the elements of the matrix, finally, we get the p-adic sequence matrix for the rational
matrix.

The following chart is an example.

D:\users\giuMirForcewrong_6.7\New Folder\padicComputation-ok\Debug\padicCo

fPicase input the numbher of rous: 3
Please input the number of columns: 3

fPlease follow the instructions to input the elements of the matrix.
NOTE: After each element you input,.please add a comma?t

Please input ROW 1 elements:
|2/3.8.5.7,

fPlease input ROW 2 elements:
o1, 1111111131112 311141111.,.8,

Please input ROY 3 elements:
4,9.,.8.75.3/5.

Numerator vector is :

[2 5 7 1 111111111111 11311311111 8 4 ?5 31
Denominator vector is =
[318 1 181 1 9 188 5]
prime number is: 7

Padic sequence degree is = 76

The matrix f

o
2
2

2
2

[\-2
U”.U’!U‘lU‘lU\H&S@NNN@waNN

HNUOONGOGRIVTANDHHWA
AW ARELWAN=SWISTOWW
MUV FWOUSESENNND DWW
NNRREROHEOIDES A WW
HENANWOIEENLs LG8 WW
B AFRFERELOLEEI LTS LW
AU NOHOIIESANNSOWW
NNRERRERRGOIIINTDOIZTETWW
HEAAF W, LW
DAR RN QEEOEOEBDWW
MUV NINND® WW
NNRERHRHOUESIAPTOHD DWW
RO OESHR aAbNE 0 WW
AAFHLIFDDEEFESIZIOOWW
CRNMUHELWEIEESNNSOWW
NNRRORSEIWOOCOE WW
HeEmdWwrsSESNLILADRWW
Wb RN LODEISNESEEWW
NNHHEHWOSESS OO WW
HEOV=woNL MO WW
MR RRERORERQESHESITEWwW
CENNEOAISANNDE WW
NNRHRHERLUESSNOOEE WW R
HFROANOHR OSSN A LD OWW e
DANEKLULOIIEEEESSESIE W W
MO NHWEeSIITINNEEWW
NNEHROAROISISIOTESWW
HemNOWwoeSSS LR WW
MARERHEFFRLUDDISSSCSOOWW
VNN RN OSSN NEB W&W
NNHEWGIFTIISISOTTTIDWW
MU WwRES00LhE R WW
DRAREIA IO WW

14

Future work
In the future, we are going to do the following:
1) Operations in the p-adic sequence domain, such as addition, subtraction, multiplication,
division, matrix inverse and so on.
2) Conversion from p-adic expansion domain to fractional domain.
3) Design friendly user interface.

4. References

[1] Krishnamurthy, F. V. “Matrix Processors Using P-adic Arithmetic for Exact Linear
Computations”, IEEE Transactions on Computers, vol. C-26, No. 7, July 1977.

[2] Vladimirov, V.S., Volovich, L.V. and Zelenov, E.I. P-adic Analysis and Mathematical Physics,
Series on Soviet & East European Mathematics — Vol. 1.World Scientific 1994.

[3] Lu, C. and An, M. “Progress Report”, 2004.

[4] Shoup, V NTL library at: http://shoup.net/ntl/

[5] Kornerup, P, and Gregory, R.T. “Mapping Integers and Hensel Codes onto Farey Fractions”, BIT
23 (1983), 9-20.

[6] Dixon, J. “Exact Solution of Linear Equations Using P-adic Expansions”, Numerische
Mathematik 40, 137-141 (1982) Springer-Verlag.

15

